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Abstract 
 
This study details the location patterns of R&D labs in the U.S., but it differs from past 
studies in a number of ways. First, rather than looking at the geographic concentration of 
manufacturing firms (e.g., Ellison and Glaeser, 1997; Rosenthal and Strange, 2001; and 
Duranton and Overman, 2005), we consider the spatial concentration of private R&D 
activity. Second, rather than focusing on the concentration of employment in a given 
industry, we look at the clustering of individual R&D labs by industry. Third, following 
Duranton and Overman (2005), we look for geographic clusters of labs that represent 
statistically significant departures from spatial randomness using simulation techniques. 
We find that R&D activity for most industries tends to be concentrated in the Northeast 
corridor, around the Great Lakes, in California’s Bay Area, and in southern California. 
We argue that the high spatial concentration of R&D activity facilitates the exchange of 
ideas among firms and aids in the creation of new goods and new ways of producing 
existing goods. We run a regression of an Ellison and Glaeser (1997) style index 
measuring the spatial concentration of R&D labs on geographic proxies for knowledge 
spillovers and other characteristics and find evidence that localized knowledge spillovers 
are important for innovative activity.     
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 Although metropolitan areas account for less than 20 percent of the total land area 

in the United States, they contain almost 80 percent of the nation’s population and nearly 

85 percent of its jobs.  Put differently, the United States has, on average, 24 jobs per 

square mile, but metropolitan areas average about 124 jobs per square mile.  According to 

Strange (2009), the population of six Canadian metropolitan areas (Toronto, Montreal 

Vancouver, Ottawa, Calgary, and Edmonton) account for almost one-half of the national 

population but less than 1 percent of Canada’s land area. Very similar concentration 

patterns are evident in data from Europe (Combes and Overman, 2004) and Asia (Fujita, 

et al., 2004). 

 This high degree of spatial concentration of people and jobs leads to congestion 

costs, such as increased traffic and pollution, and higher housing costs.  For example, 

according to the Texas Transport Institute’s annual Mobility Report, U.S. drivers spent 

on average 4.2 billion hours in traffic delays in 2007;  Los Angeles-area drivers sat the 

longest (70 hours per traveler), while motorists in the Wichita, Kansas, area  spent only 6 

hours per traveler in delays.1  Congestion has become so severe in London that in 

February 2003 the city imposed a congestion fee, currently £8 a day, on all vehicles 

entering, leaving, driving, or parking on a public road inside the Charging Zone between 

7:00 a.m. and 6 p.m., Monday through Friday.  On January 3, 2006, Stockholm became 

the second European city to introduce a congestion charge. Similar fees are now in effect 

in Singapore, Oslo, and Rome.  In the United States, New York City considered a similar 

plan and the city of Chicago is currently considering congestion fess for cars parked 

downtown.  To offset these congestion costs, workers must receive higher wages, and 

higher wages increase firms’ costs.  
                                                 
1 2007 Annual Urban Mobility Report, Texas Transport Institute: http://mobility.tamu.edu/ums/report/. 
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 If congestion costs were the only effect of the spatial concentration of firms, firms 

could easily disperse to reduce these costs; yet they do not.  This is because the negative 

effects of concentration make up only one side of the urban ledger. The positive effects of 

agglomeration economies — efficiency gains and cost savings that result from being 

close to suppliers, workers, customers, and even competitors — make up the other. Other 

things equal, firms will have little incentive to move if congestion costs are balanced by 

the benefits of agglomeration economies.  

 In this paper, we a use a new data set on the location of almost 3,500 research and 

development (R&D) labs in 1998 to establish some stylized facts regarding the spatial 

concentration of innovative activity in the United States.  We use a variant of the Ellison 

and Glaeser (1997) index of agglomeration developed by Guimarães, Figueiredo, and 

Woodward (2007) to examine the spatial distribution of R&D labs. To address the issue 

of the significance of clusters, we follow the lead of Duranton and Overman (2005) in 

that we are able to identify R&D clusters that are significantly different from spatial 

randomness.  Specifically, we use the geographic location of manufacturing employment 

as a benchmark against which to measure significant clustering.  Hence, R&D clusters 

are identified as “significant” only when they contain more R&D labs than would be 

expected on the basis of manufacturing employment alone.   

 We show that while economic activity tends to be geographically concentrated, 

spatial concentration is even more pronounced among establishments doing basic R&D.  

We find, in particular, that R&D activity for most industries tends to be concentrated in 

the Northeast corridor, around the Great Lakes, in California’s Bay Area, and in southern 

California.   
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 We conjecture that more than most types of economic activity, R&D depends on a 

particular byproduct of agglomeration economies called knowledge spillovers — the 

continuing exchange of ideas among individuals and firms. A high geographic 

concentration of R&D labs creates an environment in which ideas move quickly from 

person to person and from lab to lab.  Locations that are dense in R&D activity encourage 

knowledge spillovers, thus facilitating the exchange of ideas that underlies the creation of 

new goods and new ways of producing existing goods.   We find several pieces of 

evidence that support this view.  We run a regression of a variant of the Guimarães, 

Figueiredo, and Woodward (2007)—hereafter GFW—index measuring the spatial 

concentration of R&D labs on geographic proxies for knowledge spillovers and other 

location-specific characteristics and find evidence that localized knowledge spillovers are 

important for innovative activity.  In particular, we show that a strong positive correlation 

exists between the geographic concentration of R&D labs and citation-weighted patent 

intensity (our proxy for knowledge spillovers).2   All else equal, the index of 

agglomeration for R&D labs will be 15 percent greater in a county with twice the citation 

intensity of another county.  In addition, we find evidence (although it’s mixed) to 

support the existence of Jacobs externalities for R&D activity. 

 We also find evidence that human capital is highly correlated with the clustering 

of R&D labs.  In fact, of the things we considered, by far the most powerful effect on 

spatial clustering of labs is generated by local human capital.  Specifically, a 1 percent 

increase in the share of employment accounted for by professional and specialty 

                                                 
2 We define citation-weighted patent intensity as citation-weighted patents that are normalized by the 
number of workers in professional and specialty occupations 
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occupations is associated with a 3.5 percent increase in the spatial concentration of R&D 

labs. 

LITERATURE REVIEW 

 Krugman (1991) and Audretsch and Feldman (1996) developed a “locational Gini 

coefficient” to answer the question of which manufacturing industries cluster 

geographically. A locational Gini coefficient shows how similar (or dissimilar) the 

location pattern of employment in a particular industry is from the location pattern of 

overall employment.  Let sij represent location i’s share of employment in industry j, and 

xi represent location i’s share of aggregate employment or total population.  The spatial 

Gini coefficient for in industry j is defined as: 

 2(j i i
i

G x s= − )j∑  (1) 

 G = 0 indicates that employment in a given manufacturing industry is no more or less 

geographically concentrated than overall manufacturing employment, and  

G > 0 implies that employment in the industry is over-concentrated.  Audretsch and 

Feldman (1996) use the United States Small Business Administration’s Innovation Data 

Base that consists of innovations compiled from the new product announcements sections 

in manufacturing trade journals.  They found that innovation tends to be relatively more 

concentrated in industries where knowledge spillovers tend to be important.  

  Importantly, Ellison and Glaeser (1997)—hereafter EG—have identified a 

potential problem with the locational Gini coefficient. They argue that if an industry 

consists of a small number of establishments, the locational Gini coefficient may indicate 

localization of the industry under consideration, even if there is no agglomeration force 
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behind the industry’s location.3   EG have developed an alternative concentration measure 

that controls for an industry’s organization:  

 
2

2
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where  represents the employment Herfindahl index for industry j:   jH

2
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H z= k∑ , 

where ( :  denotes the distribution of employment across mj plants in 

industry j.  Using Proposition 1 in EG, the numerator of (2) can be expressed as: 

1, ,jk jz k m= )

jH    (3) 2(1 )[ (1 ) ]j i iG x γ γ− −Σ + −

Let na s na sγ γ γ γ γ≡ + −  where naγ  reflects the benefits of a location’s natural advantages 

(ports, resource endowments, etc.) and sγ index reflects spillovers (e.g., knowledge 

spillovers). 

 Consider the special case where plants are randomly distributed across locations. 

That is, they are neither influenced by natural advantage or spillover effects 

( ).  If we treat this spatial randomness case as the null hypothesis, then EG 

show that 

0na sγ γ= =

(1 2 )i i jx H−Σ  is the expected value, , of Gj  under this hypothesis.  In 

addition, they show that  otherwise.  If Gj is taken as an estimate of 

 then the EG index provides a test of the null hypothesis.  That is, EG compare the 

degree of spatial concentration of employment in an industry with what would arise if all 

( )jE G

i j
2( ) (1 )j iE G x H> −Σ

( )jE G

                                                 
3EG use employment in the U.S. vacuum cleaner industry to illustrate the concern. Seventy-five percent of 
employment in the industry is industrially concentrated in just four plants.  Thus, using equation (1) to 
calculate a measure of spatial concentration of this industry suggests strong spatial concentration.  But the 
strong spatial concentration may reflect nothing more than the fact that employment is industrially 
concentrated in a small number of plants. 
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plants in the industry were randomly distributed across locations.  EG, and more recently 

Rosenthal and Strange (2001), find evidence of the geographic concentration of 

employment in many U.S. manufacturing industries.   

 Duranton and Overman (2005)—hereafter DO— use plant-level data for 

manufacturing activity in the UK and show that the geographic concentration of 

manufacturing jobs is not simply an American phenomenon. Their data identify the 

postal codes for each manufacturing plant in the UK, allowing them to geo-code the data.  

This is important, since DO are not bound by a fixed geographical classification (such as 

states, MSAs, or counties) but base their approach on the actual distance between firms.  

Additionally, rather than using a specific index to measure geographic concentration, 

such as the EG index, DO take a non-parametric approach (i.e., kernel density methods).  

Essentially, DO construct frequency distributions of the pair-wise distances between 

plants in a given industry. When the mass of the distribution is concentrated on the left of 

the distribution, this represents a spatial concentration of plants in the industry.  

Alternatively, if the mass of the distribution is concentrated on the right of the 

distribution, this represents a more dispersed spatial pattern. Importantly, DO consider 

whether the number of plants at a given distance is significantly different from the 

number found if their locations were randomly chosen.  This represents an important 

improvement over the rule-of-thumb approach used by EG to determine differing levels 

of the spatial concentration of an industry.  

 A study by Arzaghi and Henderson (2005) looks at the location pattern of firms in 

the advertising industry in Manhattan. They report that Manhattan accounts for 20 

percent of total national employment in the ad industry, 24 percent of all advertising 
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agency receipts, and 31 percent of media billings. They show that for an ad agency, 

knowledge spillovers and the benefits of networking with other nearby agencies are large 

but the benefits dissipate very quickly with distance from other ad agencies and are gone 

after roughly one-half of a mile. 

 Holmes and Stevens (2004) take a broader approach. They use employment data 

for all U.S. industries, not just manufacturing, and not for just a single industry, such as 

advertising. Among the 15 most concentrated industries, they find that six are in mining 

and seven are in manufacturing; only two industries fall outside mining and 

manufacturing (casino hotels and motion picture and video distribution).   

 Several other studies find that knowledge spillovers dissipate rapidly with 

distance. See, for example, Arzaghi and Henderson (2005), Audretsch and Feldman 

(1996), and Keller (2002).  Agrawal, Kapur, and McHale (2008) find that every 1000-

mile increase in the distance between inventors reduces the probability of knowledge 

flow as measured by patent citations by about  2 percent.    

 Our work differs from past studies in three ways. First, rather than looking at the 

geographic concentration of firms engaged in the production of goods (such as 

manufacturing) and services (such as advertising), we consider the spatial concentration 

of private R&D activity.4   Second, rather than focusing on the concentration of 

employment in a given industry, we look at the clustering of individual R&D labs.5  

                                                 
4 A number of other studies  look at innovative output across cities, such as the study by Audretsch and 
Feldman (1996). What is unique about our article is that we look at the spatial clustering of private R&D 
activity.  
5 The study by Guimarães, Figueiredo, and Woodward (2007) is the only other study we are aware of that 
looks at spatial clustering at the establishment level. Specifically, they look at the geographic concentration 
of over 45,000 plants in 1999 for concelhos (counties) in Portugal.  
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Third, following DO, we look for geographic clusters of labs that represent statistically 

significant departures from spatial randomness using simulation techniques. 

DATA AND MODEL 

 We used 1998 data on R&D labs from the Directory of American Research and 

Technology to electronically code the addresses and other information about R&D labs, 

data that were not previously available in a machine-readable format. Since the directory 

lists the complete address for each establishment, we were able to assign a geographic 

identifier (using geocoding techniques) to 3,446 R&D labs in the U.S. in 1998.6    The 

data on manufacturing employment at the zip code level are found in the Department of 

Commerce’s Zip Code Business Patterns 1998 data. We assigned these data to each point 

by assuming that manufacturing employment is uniformly distributed across points 

within a zip code.   

 Clustering of R&D Labs.   Figure 1 shows a map of the spatial distribution of 

R&D labs that reveals a striking clustering of this activity.  The dots shown on the map 

tend to represent concentrations of R&D labs. A prominent feature of the map is the high 

concentration of R&D activity in the Northeast corridor, stretching from northern 

Virginia to Massachusetts. There are other concentrations, such as the cluster around the 

Great Lakes and the concentration of labs in California’s Bay Area and in southern 

California. But some states that account for a relatively large share of the nation’s jobs 

account for a much smaller share of the nation’s R&D labs.  For example, Texas ranks 

second among states in terms of employment, but it ranks eighth in terms of labs.  

Similarly, Florida ranks fourth in employment but 13th in terms of labs.  

                                                 
6 Our data on individual labs were limited to the top 1000 public companies in terms of expenditures on 
R&D.  The 1000 labs in our data set cover over 95 percent of all R&D performed by public companies. 
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 As already noted, recent studies have shown that economic activity, especially 

manufacturing, also tends to be geographically clustered. However, it appears that R&D 

labs are more highly concentrated than establishments in general or establishments in 

manufacturing. There are more than 3100 counties in the U.S., and all of them are 

engaged in some type of economic activity. All but 33 counties are engaged in some form 

of manufacturing activity.  In contrast, only 519 of these counties have at least one R&D 

lab, and far fewer counties have a notable concentration of labs.  

 Another way to quantify relative concentrations is to compute each county’s share 

of total R&D labs and rank counties by descending order of this share.  Moving down 

this ranking, we compute a cumulative total for the share of R&D labs. We also construct 

a similar ranking for establishments in general and for manufacturing establishments in 

particular. The top 50 counties ranked by number of R&D labs account for 58 percent of 

all R&D labs, while the top 50 counties ranked by number of manufacturing 

establishments account for only 36 percent of all manufacturing establishments and only 

32 percent of all establishments.  It appears that R&D labs are more highly concentrated 

than economic activity in general and overall manufacturing activity in particular. This is 

important because it means the concentration of R&D labs doesn’t simply reflect the 

concentration of manufacturing activity.  Since R&D is more concentrated than 

manufacturing activity, this suggests that some factors, such as knowledge spillovers, 

may be a more centralizing force for R&D than they are for manufacturing activity.  

 Which R&D Labs Cluster?  To answer the question of which R&D labs cluster, 

we will follow the lead of GFW, who have generalized the EG index to include the case 

where the data are in the form of establishments (labs, in our case) rather than 
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employment shares, as in the EG index. The GFW locational Gini, or the GFW index, is 

constructed as follows: let: = the number of labs in county i, in industry j,  = the 

total number of labs in industry j across all i counties in the U.S., 

ijn jn

ix  = is county i’s share 

of aggregate manufacturing employment.  Let the spatial Gini based on counts be defined 

as: 

2

,
ij

j c i
i i

n
G x

n
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

∑  

The adjusted spatial Gini for industry j is given by: ˆ( )jG  

 ( )
2

,
2

(1 )ˆ
1 (1 )

j j c ii
j

j ii

n G x
G

n x
− −

=
− −

∑
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ˆ
jG is similar to that of the EG index—equation (2)—except that in the above index,  is 

replaced by 

jH

1
jn  and the spatial Gini for manufacturing employment, in the EG 

index, is replaced by its counterpart expressed in terms of counts of labs instead of 

employment.  The expression ( )

jG

21 (1 )j i
n − − ix∑ is included so that the index has the 

property that = 0 when labs are no more or no less concentrated than manufacturing 

employment.  For our county data, 

ˆ
jG

2(1 )ii
x−∑  takes on values close to one, 0.99593.7  

 We use the adjusted GFW index as our measure of concentration for R&D by 

industry. Our sample consists of 376 four-digit Standard Industrial Classification 

industries at the county level.  We find an adjusted GFW index of 0.0457 for R&D in the 

average industry at the county level.  In studying the agglomeration patterns in the 

                                                 
7 See GFW for details on the construction of the adjusted GFW index used in this article as well as a 
discussion of the EG index.  
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manufacturing industries, Rosenthal and Strange (2001) report an average adjusted Gini 

coefficient (using the EG index) of 0.0193 for manufacturing in 2000 at the county 

level.8   Thus, our R&D labs appear to be more spatially concentrated, on average, than is 

manufacturing activity. Our measure of concentration, the adjusted GFW index, has a 

maximum value of about one for R&D in five industries.9  However, there are only two 

R&D labs in each of these industries, so it’s not surprising to find a large value for the 

adjusted Gini index if the two firms are located in proximity to one another.10  Table 1 

shows the values of the adjusted GFW index for industries with 20 or more labs. The 

table shows that R&D tends to be most concentrated in the oil and gas field machinery 

industry, the computer storage devices industry, and the electronic computer industry.   

 Our findings indicate that 256, or 68 percent, of all R&D labs have an adjusted 

Gini index greater than zero, suggesting R&D labs are appreciably more concentrated 

than manufacturing employment.  Earlier we reported that the top 50 counties ranked by 

number of R&D labs account for 58 percent of all R&D labs, while the top 50 counties 

ranked by number of manufacturing establishments account for only 36 percent of all 

manufacturing establishments. Thus, the concentration of labs is broadly similar when 

looking at the top 50 counties or the adjusted Gini index.   Only 1 percent of the labs are 

associated with an index that is negative, indicating dispersion.  

 While an adjusted Gini index could have a value greater than zero, an important 

question is, “Does this represent a significant departure from the average concentration of 
                                                 
8 Ellison, Glaeser, and Kerr (2007) report an average adjusted Gini coefficient of 0.03 for manufacturing in 
1997 at the metropolitan area level.   
9 They are R&D activity in hog production; the production of brooms and brushes; the production of fiber 
cans, tubes, drums; the bottled and canned soft drinks and carbonated waters industry; and the rolling mill 
machinery and equipment industry. 
10 There is a negative relationship between the size of the adjusted GFW index and the number of labs in an 
industry.  However, this relationship is not strong: a correlation coefficient of -0.09 that is only marginally 
significant (at the 10 percent level). 

 11



manufacturing employment?” We performed a simulation procedure to determine what 

value of the adjusted GFW indexes constitutes a significant departure from the 

concentration of manufacturing employment.11   We find R&D labs in 129 of the 376 

industries considered (34.3 percent) are significantly more concentrated than is 

manufacturing employment.    

 Figure 2 shows the distribution of the adjusted GFW index for R&D activity. 

Each bar shows the number of industries associated with a particular value for the 

adjusted GFW index.  Following EG, we consider R&D in an industry to be highly 

concentrated if the adjusted Gini index is at least 0.05 and moderately concentrated if the 

index is at least 0.02, but less than 0.05.  R&D in an industry is considered to be 

dispersed if the index is less than 0.01.  A prominent feature of Figure 2 is the large 

number of industries falling into the range we have classified as not very concentrated (an 

adjusted GFW index less than 0.02). The tallest bars tend to surround an adjusted GFW 

index around zero. In fact, 69 percent of the industries have an adjusted GFW index 

below 0.02.12  Sixty-six of the 376 industries considered have an adjusted GFW index 

                                                 
11 To develop measures of statistical significance for the adjusted GFW indexes, we divide our labs into six 
non-overlapping groups based on the number of labs in a given industry. The first group consists of 
industries with between 2 and 9 labs.  The second group consists of industries with 10 to 30 labs, while the 
third group consists of industries with between 31 and 50 labs.  The fourth group consists of industries with 
between 51 and 100 labs, while the fifth group consists of industries with 101 to 200 labs.  The final group 
consists of industries composed of over 200 labs.  For each group, we performed a simulation procedure to 
produce a probability distribution for the adjusted GFW index.  In the simulation we randomly allocated 
labs to counties while maintaining the counties’ shares of national manufacturing employment.  Therefore, 
if a given county has a relatively high share of the nation’s manufacturing jobs, the county is more likely to 
be randomly assigned more R&D labs, too.  For each group the simulation produces a value for the 
adjusted GFW index.  For each group, we performed 1000 simulations and formed a probability 
distribution for the adjusted GFW indexes.  From the distribution we can calculate critical values (one 
that’s positive and one that’s negative) that allow us to say that we are 95 percent certain that any value that 
exceeds (falls below) the critical value indicates that labs in that grouping are significantly more 
concentrated (significantly more dispersed) than is the distribution of manufacturing employment.  
 
12 Similar to our finding that the largest percentage of R&D labs is generally not more concentrated than 
manufacturing employment, Ellison and Glaeser’s finding shows that the largest number of manufacturing 
industries could also be classified as not very concentrated. 
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that is at least 0.05. That’s only 18 percent of all industries. In addition, these 66 hig

concentrated industries account for only 6 percent of all R&D labs. If we include 

industries that are moderately concentrated — that is, those with an adjusted GFW index 

that is at least 0.02 but less than 0.05 — we can add another 49 names to the list of 

industries that tend to be more concentrated relative to manufacturing employment. Still, 

these 115 concentrated industries (66 highly concentrated industries plus 49 moderately 

concentrated industries) account for only 31 percent of all industries and for only 29 

percent of all R&D labs.  

hly 

 Until now, we have looked at the concentration of R&D labs relative to the 

concentration of manufacturing employment. We would also like to know whether labs in 

a particular industry (such as pharmaceuticals) are more or less concentrated than overall 

R&D labs. To get this information, we recalculated the adjusted GFW index to reflect the 

geographic concentration of labs in individual industries relative to the overall 

concentration of R&D labs (as opposed to the overall concentration of manufacturing 

employment). The distribution of the adjusted GFW index when the benchmark is overall 

R&D labs (Figure 3) is remarkably similar to the distribution when the benchmark is 

overall manufacturing employment (Figure 2). However, there tends to be slightly more 

concentration of labs in individual industries compared with the location of labs in 

general. Thirty-six percent of the industries are at least moderately concentrated, 

compared with 31 percent when the benchmark is manufacturing employment. Still, the 

tallest bars in Figure 3 tend to surround an adjusted GFW index around zero, suggesting 

that for the majority of industries, labs at the industry level tend not to be more spatially 

concentrated than labs overall.   
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 Maps of R&D activity for individual industries (for example, software, Figure 4; 

pharmaceuticals, Figure 5; and chemicals, Figure 6) confirm the findings of the locational 

Gini coefficient in that the location pattern of R&D activity for the majority of industries 

is broadly similar to the location pattern of overall R&D activity. That is, R&D activity 

for most industries tends to be concentrated in the Northeast corridor, around the Great 

Lakes, in California’s Bay Area, and in southern California.   

 As indicated, there are a number of exceptions to the general pattern of 

geographic concentration just described. One exception is R&D activity in the oil and gas 

field machinery industry, which tends to be concentrated in Texas, especially in the 

Houston area, and accounts for about 60 percent of the labs doing R&D in this industry 

(Figure 7). Another exception is the location of R&D activity in the motor vehicle and car 

body industry, which tends to be concentrated in Michigan, especially in the Detroit area, 

and which accounts for just under 40 percent of the labs doing R&D in this industry 

(Figure 8). This industry is composed of establishments primarily engaged in 

manufacturing motor vehicle parts and accessories.   

WHY DO R&D LABS CLUSTER? 

 A number of theories have been advanced to explain firms’ (not just R&D labs’) 

tendency to cluster spatially.  Firms may attempt to minimize transport costs by locating 

close to a natural resource used as an input, or to their suppliers, or to their markets. Or 

firms may cluster to share inputs, such as specialized workers. Finally, firms may cluster 

to take advantage of knowledge that “spills over” when firms are located near one 

another. Among these, the sharing of inputs and especially of knowledge spillovers is 

likely to be most important for R&D labs when choosing a location. 
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 Knowledge Spillovers.  While theories of knowledge spillovers were originally 

developed to explain the concentration of industries in general, we think they are 

particularly important to an explanation of the clustering of R&D labs.  More than most 

industries, R&D depends on new knowledge. Often, the latest knowledge about 

technological developments is valuable to firms but only for a short time. Thus, it 

behooves firms to set up shop as close as possible to the sources of information. The high 

spatial concentration of R&D activity facilitates the exchange of ideas among firms and 

aids in the creation of new goods and new ways of producing existing goods.   

Two types of knowledge spillovers are thought to be important in understanding 

the location pattern of R&D labs: MAR spillovers and Jacobs spillovers. According to the 

MAR theory of spillovers, the concentration of establishments (labs in our case) in the 

same industry in a common area helps knowledge travel among labs and their workers 

and facilitates innovation and growth.13   Using data for U.S. manufacturing, Rosenthal 

and Strange (2001) and Ellison, Glaeser, and Kerr (2007) consider the importance of 

input sharing, matching, and knowledge spillovers for manufacturing firms at various 

levels of geographic disaggregation (state, MSA, county, and  zip code levels). These 

studies find evidence for all three mechanisms.  Importantly, Rosenthal and Strange 

(2001) find that the effects of knowledge spillovers on the agglomeration of 

manufacturing firms tend to be quite localized, influencing agglomeration only at the zip 

code level.14    

                                                 
13Glaeser, Kallal, Scheinkman, and Shleifer (1992) coined the term MAR spillovers. MAR spillovers are 
so-called because Marshall (1870) developed a theory of knowledge spillovers that was later extended by 
Arrow (1962) and Romer (1986)—hence, MAR.     
14Several other studies have found that knowledge spillovers dissipate rapidly with distance. See, for 
example, the articles by Arzaghi and Henderson (2005); Audretsch and Feldman (1996); Keller (2002); and 
Kolko (2007).  The extent to which innovation in communications technologies are rendering face-to-face 
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 Jacobs (1969) believed that knowledge spillovers are related to the diversity of 

industries (diversity of labs in our case) in an area, in contrast to MAR spillovers, which 

focus on firms in a common industry. Jacobs argued that an industrially diverse 

environment encourages innovation. Such environments include knowledge workers with 

varied backgrounds and interests, thereby facilitating the exchange of ideas among 

individuals with different perspectives. This exchange can lead to the development of 

new ideas, products, and processes.  While other factors could be at work, the adjusted 

GFW indexes appear to offer support for Jacobs’s diversity view, in that R&D labs for 

the vast majority of industries (about two-thirds) tend to exhibit a common overlapping 

pattern of concentration.  Feldman and Audretsch (1999) used the U.S. Small Business 

Administration’s Innovation Data Base and focused on innovative activity for particular 

industries within specific MSAs. They found less industry-specific innovation in MSAs 

that specialized in a given industry, a finding that also supports Jacobs’s diversity thesis. 

 Other Forces for Concentration. While it’s tempting to argue that the broadly 

similar geographic clustering of R&D labs in many different industries is suggestive of 

Jacobs externalities, this conjecture is simply based on visual inspection of a map (Figure 

1).  The finding that R&D labs tend to display a common overlapping pattern of 

concentration suggests that Jacobs spillovers may be more important for R&D labs than 

MAR spillovers.  Jacobs spillovers are one possible way to account for the common 

overlapping pattern of concentration among R&D labs, but other forces might be at work.  

One such source is the natural advantages an area offers to firms that locate there.  The 

                                                                                                                                                 
contacts obsolete is not so clear.  Gaspar and Glaeser (1998) argue that improvements in 
telecommunications technology increase the demand for all interactions. So while technology may 
substitute for face-to face contacts, this effect is offset by the greater desire for all kinds of interactions, 
including face-to-face contacts. 
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natural advantages of an area, such as climate, soil, and mineral and ore deposits, could 

explain the location of some R&D labs.  For example, oil deposits, an essential ingredient 

for testing equipment, may be largely responsible for the concentration of R&D labs in 

the oil and gas field machinery industry (the most highly concentrated industry according 

to our adjusted GFW indexes) in Texas, especially in the Houston area.  But the draw of 

ore deposits seems to be industry specific and is therefore unlikely to account for the 

common overlapping pattern of concentration among R&D labs in many different 

industries.  Of course, if R&D labs tend to be drawn to areas offering amenities such as 

pleasant weather, proximity to the ocean, and scenic views, this could explain the 

overlapping concentration in amenity-rich locations, such as the concentrations found in 

California.  While local amenities might explain some of the concentrations of labs, the 

vast majority of R&D labs tend to be highly concentrated in the relatively low-amenity 

rust belt region of the country. 

Another type of an area’s natural advantage  is its workers and its institutions, 

especially its universities.  Universities are key players not only in creating new 

knowledge through the basic research produced by their faculties but also in supplying a 

pool of knowledge workers on which R&D depends. It is well known that Silicon Valley 

and the Route 128 corridor became important centers for R&D as a result of their 

proximities to Stanford and MIT. Saxenian (1994) describes how Stanford’s support of 

local firms is an important reason for the Silicon Valley’s success. Two of Stanford’s star 

engineering professors, John Linvill and Fred Terman, not only drew some of the best 

and brightest students to Stanford but also trained their students (and encouraged them) to 

seek careers in the semiconductor industry. 
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There is also evidence that an area’s human capital can be an important type of 

natural advantage.  Carlino, Chatterjee, and Hunt (2007) looked at the effect of a 

metropolitan area’s human capital (the share of the adult population with at least a 

college education) on an area’s ability to innovate (measured by patents per capita).  Of 

the explanatory factors they considered, by far the most powerful effect on local 

innovation is generated by local human capital.  They find that a 10 percent increase in 

the share of the adult population with at least a college degree is associated with an 8.6 

percent increase in patents per capita.  Lin (2007) finds that applications and adaptations 

of new work are positively correlated with an area’s human capital and industrial variety. 

There is also general evidence that R&D at local universities is important for 

firms’  innovative activity. Audretsch and Feldman (1996) and Anselin, Varga, and  Acs 

(1997) found evidence of localized knowledge spillovers from university R&D to 

commercial innovation by private firms, even after controlling for the location of 

industrial R&D.  However, Carlino, Chatterjee, and Hunt (2007) found that R&D at local 

universities has only modest effects on local innovative activity.  They found that a 10 

percent increase in R&D intensity of local universities is associated with less than a 1 

percent increase in patent intensity.  

Estimates of the Determinants of R&D Clustering.  In this section, we consider 

the role of knowledge spillovers and access to skilled human capital on the spatial 

clustering of R&D labs.  Recall that we have only one adjusted GFW index for each 

industry.  These industry indexes can, however, be used to construct an overall adjusted 

GFW index for each county.  We do this by weighting each industry’s adjusted GFW 

index by the share of the county’s R&D labs accounted for by that industry.  Each of the 
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industry-weighted adjusted GFW indexes for a given county are then summed to arrive at 

an overall adjusted GFW index for each county.   

The overall adjusted GFW index for a county can be correlated with proxies for 

agglomeration economies.  One such economy is the ability of firms in a common 

endeavor to share specialized inputs.  Highly skilled labor is likely to be an important, if 

not the most important, input in the R&D process. We measure highly skilled labor using 

those jobs falling into the Census Bureau’s classification of professional specialty 

occupations. This grouping includes engineers, scientists, social scientists, doctors, and 

other health professionals. But it also includes teachers, lawyers, artists, and athletes.  

This is a residency-based measure of employment in 1990.  We expect a positive 

correlation between the GFW index and the professional specialty occupations variable.  

 Two proxies are used for knowledge spillovers available to labs in the same 

county.  Citation-weighted patents normalized by the number of workers in professional 

specialty occupations are one variable used to proxy for knowledge spillovers.  As 

Rosenthal and Strange (2001) point out, one concern about using patents as an indicator 

of knowledge spillovers is that the value of patents is very highly skewed. Most are not 

worth very much, while some have values that are higher by several orders of magnitude 

(see, for example, Harhoff et al., 1999).  Fortunately, there are ways to introduce an 

adjustment for quality into these counts, just as is done for journal articles—by counting 

the number of citations a patent receives in subsequent patents.  A number of empirical 

studies document a strong positive correlation between these “forward” citations and the 

economic value these patents contribute to the firms that own them. For example, Hall, et 

al. (2005) show that a one-citation increase in the average number of patents in a publicly 
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held firm’s portfolio increases its market value by 3 percent. In addition, these citations 

present a concrete illustration of knowledge spillovers.15  Thus, we use citation-weighted 

patents per worker in the professional specialty occupations in 1990 at the county level as 

one of our proxy variables for knowledge spillovers.  In addition, we use universities’ 

R&D in the years 1987-89 as a proxy variable for information spillovers from 

universities to private R&D labs.  R&D performed by academic institutions is normalized 

by total full-time enrollment at colleges and universities in the MA in those years.  

  A Herfindahl index of industrial diversity is used to address the question as to 

whether knowledge spillovers are largely Jacobs or largely MAR. By construction, a 

county is said to be more highly specialized or less diversified as the value of the 

diversity index increases. 16    Recall that as the value of the adjusted GFW index 

increases, the extent of the spatial concentration of labs in the industry also increases.  A 

positive correlation between the overall county adjusted GFW index and the 

specialization index means that as the county becomes more specialized industrially its 

labs are also becoming more geographically concentrated.  This is evidence favoring 

MAR spillovers.  On the other hand, if the geographic concentration of labs tends to 

increase as the specialization index decreases—indicating a more industrially diverse (or 

less specialized) area—this negative correlation provides evidence in favor of Jacobs 

spillovers.   

                                                 
15 In a survey of 1,300 inventors, Jaffe, Trajtenberg, and Fogarty (2000) found that approximately one-half 
of the patent citations refer to some sort of knowledge spillovers, of which 28 percent correspond to a very 
substantial spillover. Jaffe et al. (1993) provide evidence that these spillovers are at least initially localized.   
16The Herfindahl index is calculated by squaring and summing the share of establishments accounted for by 
each industry in a given county.  The squaring of industry shares means that the larger industries contribute 
more than proportionately to the overall value of the index.  Thus, as the index increases in value for a 
given county, this implies that the county is more highly specialized or less diversified industrially.   
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 The share of employment in the manufacturing industry is included in all 

regressions to control for the fact that the vast majority of patents are issued to firms in 

the manufacturing sector.  Finally, we used eight census region dummy variables to 

broadly control for an area’s natural advantages, such as climate (New England is the 

excluded region in all regressions). 

 Estimates of the Determinants of Concentration of R&D Labs.  The forces 

underlying the agglomeration of R&D labs are estimated using the following regression 

framework: 

i iGFW X iβ ε= +      (4) 

where  is the industry-weighed adjusted GFW index based on R&D labs in 1998 

for county i; 

iGFW

iX  is a vector of county characteristics; and iε  is the usual error term.  To 

mitigate any bias induced by endogeneity or reverse causation, all the independent 

variables are lagged—none reflect economic activity after 1990.  Our results are 

presented using robust standard errors (White corrected) to control for any 

heteroskedasticity. 

 Findings.  The findings of the regression results are summarized in Table 2.  

Column (1) of the table summarizes the results for a robust OLS regression for all 

counties (approximately 3100 counties).  An important finding is that the citation-

weighted patents intensity variable is positive and highly significant, indicating the 

importance of knowledge spillovers for R&D labs.  The relationship between the county-

adjusted GFW index and the citation-weighted patents intensity variable is economically 

significant, displaying an elasticity (evaluated at the mean) of 0.15—a 10 percent 
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increase in citation intensity results in almost a 1.5 percent increase in the weighted 

adjusted GFW index.  

 The coefficient on the university R&D variable is positive, as expected, but not 

statistically significant, suggesting little information spillovers from university R&D to 

private lab R&D.  This finding is consistent with Carlino, Chatterjee, and Hunt (2007), 

who found that R&D at local universities has only modest effects on local innovative 

activity.  Interestingly, we found a negative and highly significant correlation between the 

overall county adjusted GFW index and the specialization index, evidence favoring 

Jacobs spillovers.  The evidence from the regressions favors Jacobs spillovers and 

supports the intuition from our maps showing broadly similar geographic clustering of 

R&D labs in many different industries, also suggestive of Jacobs externalities.   

 By far the most powerful effect is generated by human capital (the share of the 

employment accounted for by professional specialty occupations).  This variable is 

positive, highly significant, and economically significant too, with an elasticity of 3.5.  

Finally, the coefficients on the regional dummy variables are not statistically significant; 

suggesting that an area’s natural advantages do  not  influence  the location decisions of 

private R&D labs. 

 Given that the vast majority of labs tend to be located in metropolitan counties, 

the regression summarized in Column (2) of Table 2 adds a dummy variable that is unity 

for metropolitan counties and zero otherwise.  The coefficient on the metropolitan county 

dummy variable is positive and highly significant.  With the exception of  the Herfindahl 

index, the results after adding the metropolitan dummy variable are broadly similar to the 

regression without this dummy variable.  Interestingly, the coefficient on the Herfindahl 
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index is negative but no longer statistically significant.  One possibility is that 

metropolitan counties are more industrially diverse than non-metropolitan counties and 

that this greater diversity is being captured by the metropolitan dummy variable.  To 

investigate this possibility, Column (3) of Table 2 summarizes the results when only the 

752 metropolitan counties are used in the regression. The coefficient on the Herfindahl 

index is now negative and highly significant.   

 Spatial dependence.  There is a very high degree of spatial inequality in the 

distribution of R&D labs. As Figure 1 shows, labs tend to be highly concentrated in the 

metropolitan areas of the Northeast corridor, around the Research Triangle in North 

Carolina, and in California’s Silicon Valley. Even though the coefficients on our regional 

dummy variables are typically insignificant, this clustering of innovative activity suggests 

there could be strong spatial dependence at a more localized level and, if so, it should be 

controlled for in our empirical analysis.   

The conjecture, then, is that a cluster of labs in one county may be highly 

correlated with a cluster in nearby counties; this is especially likely for counties in the 

same MSA. The consequences of spatial autocorrelation are the same as those associated 

with serial correlation and heteroskedasticity:  When the error terms across counties in 

our sample are correlated, OLS estimation is unbiased but inefficient. However, if the 

spatial correlation is due to the direct influence of neighboring counties, OLS estimation 

is biased and inefficient (Anselin, 1988).   

The literature suggests two approaches to dealing with spatial dependence. In the 

first approach, spatial dependence is modeled as a spatial autoregressive process in the 

error term: 

 23
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W

N
ε λ ε μ

μ σ

= +

∼
 

where  is the spatial autoregressive parameter and  is the uncorrelated error term.λ μ

0 : 0H

 W is 

a spatial weighting matrix where nonzero off-diagonal elements represent the strength of 

the potential interaction between the sth and tth counties. We use the inverse of the square 

of the geographic distance between counties to fill in the off-diagonal elements of W .   

(The spatial weights are row standardized.)  The null hypothesis of no spatial error 

dependence is λ = . 

 The second approach models the spatial dependence in R&D labs via a spatially 

“lagged” dependent variable: 

GFW WGFW Xρ β ε= + +  

where GFW is an Nx1 vector and N is the number of locations in our study; ρ  is the 

autoregressive parameter (a scalar); W  is the NxN spatial weight matrix described above; 

X is an NxK matrix of other explanatory variables from before; and ε  is the Nx1 random 

error term. The null hypothesis of no spatial lag is 0 : 0H ρ = . 

 Following Anselin and Hudak (1992), we perform three tests for spatial 

autocorrelated errors: Moran’s I test, the Lagrange multiplier (LM) test, and a robust 

Lagrange multiplier test (robust LM). We also perform two tests for the spatial lag model 

(LM test and a robust LM test). The Moran’s I test is normally distributed, while the LM 

tests are distributed 2χ  with k and one degree of freedom, respectively.   

 We estimate the OLS specifications previously reported in column 2 of Table 2 

using these various tests for spatial dependence. The null hypothesis of zero spatial lag 

cannot be rejected in any specification. The results for spatial error are somewhat more 
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ambiguous. The null hypothesis is clearly rejected according to the Moran’s I test and the 

LM test, but not according to the robust LM test.  Still, spatial lag dependence is likely to 

be an issue for our specifications.  Given this, we re-estimate the OLS specification 

reported in column 2 of Table 2, incorporating a correction for either spatial error or 

spatial lag. Columns 2 and 3 of Table 4 present the results for the regressions that correct 

for spatial dependence.  As columns 2 and 3 show, the results after correcting for spatial 

error are virtually identical with the results after correcting for a spatial lag.  Importantly, 

the evidence for knowledge spillovers is strengthened.  First, as before, the correlation 

between citation-weighted patents per worker in the professional specialty occupations 

and the GFW index remains positive and highly significant.  In addition, the coefficient 

on the university R&D variable is now positive and significant, suggesting that R&D at 

local universities is important in the location decisions of private R&D labs. However, 

the elasticity is small—0.04.  The results are still consistent with the view that private 

R&D labs may be drawn to areas that have a relative abundance of highly skilled workers 

that the industry requires.  Unfortunately, after correcting for spatial dependence, the 

coefficient on the Herfindahl index, while remaining negative, is no longer significant. 

Thus, our results regarding the importance of Jacobs spillovers for R&D labs are mixed.  

 Interestingly, as Table 3 shows, the null hypothesis of zero spatial error ( 0λ = ) a

well as the null hypothesis of zero spatial lag (

s 

0ρ = ) cannot be rejected when the sample 

is restricted to the 752 MSA counties. The lack of spatial dependence in the MSA sample 

suggests that the spatial dependence found in the sample using all 3108 counties is 

largely due to spatial dependence among labs in counties within the same metropolitan 

area.  
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 In sum, we find evidence for agglomeration economies in the clustering of R&D 

labs at the county level.  The strongest evidence for agglomeration economies is found 

for the citation-weighted patents per worker in the professional and specialty occupations 

variable, a proxy for localized knowledge spillovers. The coefficient on this variable is 

positive and highly significant and is robust to sample size (a sample of all counties and a 

sample of only MSA counties) and robust to corrections for spatial dependence. The 

evidence for knowledge spillovers from academic R&D to private lab R&D is mixed. 

The coefficient on the university R&D variable is positive but not significant in either the 

full sample or the MSA sample.  Interestingly, the coefficient on the academic R&D 

variable is positive and significant after correcting for spatial dependence.  Still, the 

estimated magnitude of the effect of academic R&D on the clustering of private R&D 

labs is small.  We find evidence that human capital in an area may be a draw for private 

R&D labs.  An elasticity of 3.5 is found for the spatial concentration of labs with respect 

to the share of employment accounted for by professional specialty occupations.  Finally, 

the evidence for Jacobs-style spillovers is mixed.  We found evidence favorable to Jacobs 

in both the full sample and in the MSA sample, but this evidence is not robust to 

corrections for spatial dependence in the full sample. 

CONCLUSION  

 In this paper, we show that R&D activity for most industries tends to be 

concentrated in the Northeast corridor, around the Great Lakes, in California’s Bay Area, 

and in southern California.  We hypothesize that the relatively high spatial concentration 

of R&D activity is due to the fact that R&D depends on knowledge spillovers more than 

most types of business activities.  We find evidence that supports this view.  We run a 
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regression of a variant of the EG index measuring the spatial concentration of private 

R&D labs at the county level on geographic proxies for knowledge spillovers as well as 

other characteristics and find evidence that  localized knowledge spillovers are important 

for the spatial clustering of innovative activity.  In particular, we show that a strong 

positive correlation exists between the geographic concentration of R&D labs and 

citation-weighted patents per worker in professional and specialty occupations (a proxy 

for knowledge spillovers).  All else equal, the index of agglomeration for R&D labs will 

be 15 percent greater in a county with twice the citations intensity of another county.  In 

addition, we find evidence that supports the idea that Jacobs externalities are important 

for R&D activity, although the evidence is mixed.  By far the most powerful effect is 

generated by human capital (the share of the employment accounted for by professional 

specialty occupations).  This variable is positive and highly significant and it’s 

economically significant too—an elasticity of 3.5.   

 Policymakers view the success of areas such as Silicon Valley in California, the 

Route 128 corridor in Boston, and North Carolina’s Research Triangle as a miraculous 

recipe for local economic development and growth. But are these examples exceptions 

rather than the rule? The answer appears to be no. We show that equally remarkable 

concentrations may be found in many other types of R&D activity, such as the 

concentration of R&D in the pharmaceutical industry in Northern New Jersey and 

Southeastern Pennsylvania.  In this article, we show that many types of R&D 

establishments are highly concentrated geographically.  However, studies by Saxenian 

(1994) and Duranton (2008) provide a cautionary note for policymakers who view the 

success of areas such as Silicon Valley as a recipe for local economic development and 
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growth. While investing in science centers to attract R&D activity is fairly common in 

the U.S., Saxenian’s study suggests that creating the right corporate culture to make the 

centers successful is more challenging.  Duranton (2008) points out that designing cluster 

policy is extremely tricky, and even if policymakers get it right, often the benefits of 

clustering may be too small to justify the cost of bringing them about.  We suggest that 

policymakers, instead of targeting industries, consider strategies that help to establish a 

good business environment and the efficient provision of locally provided public goods 

and services. 
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Table 1: Concentration of R&D Labs for Selected Industries 

INDUSTRY NUMBER 
OF LABS

Adjusted GFW 
Indexa 

Highly Concentrated 
Industriesb   

   
Oil & Gas Field Machinery 22 0.33 
Tires and Tubes 14 0.12 
Computer Storage Devices 34 0.08 
Motor Vehicles & Car 
Bodies 26 0.06 

Electronic Computers 57 0.06 
   
Moderately Concentrated 
Industriesc   

   
Semiconductors 278 0.03 
Prepackaged Software 359 0.03 
Motor Vehicles Parts 134 0.03 
Optical Instruments and 
Lenses 36 0.03 

Radio and TV 
Communication Equipment 185 0.02 

   
Dispersed Industriesd   
   
Search, Detection, 
Navigation 155 0.01 

Paints, Varnishes, etc. 131 0.01 
Refrigeration, Heating 
Equipment 36 0.00 

Printed Circuit Boards 64 0.00 
Electronic Connectors 66 0.00 

  a The adjusted GFW index for a given industry shows the sum of the  
  squared differences of the share of employment in manufacturing from  
  the share of labs in given industry, adjusted to account for the industrial  
  organization of the industry under consideration. 
  b R&D in an industry is highly concentrated if the adjusted Gini  
  coefficient is at least 0.05. 
  cR&D in an industry is moderately concentrated if the adjusted Gini  
  coefficient is at least 0.02, but less than 0.05. 
  dR&D in an industry is dispersed if the adjusted Gini coefficient is less  
  than 0.02. 
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Table 2: Determinants of Spatial Concentration of R&D Labs† 

 Robust OLS 

 (1) (2) (3) 

 All 
Counties 

All 
Counties 

MSA 
Counties 

Herf. Index -0.0012 
(1.79)* 

-0.0004 
(0.79) 

-0.0947 
(2.74)*** 

Professional 
Share,1990 

0.4086 
(4.37)*** 

0.2633 
(2.88)** 

0.2543 
(2.60)*** 

Citation-
Weighted 

Patents, 1990 

0.6294 
(2.28)** 

0.5030 
(1.97)** 

1.3145 
(1.65)* 

University R&D 
per Student, 
1987-1989 

0.0001 
(1.39) 

0.0001 
(1.37) 

0.0001 
(1.40) 

MSA Dummy  0.0129 
(3.33)***  

No. of Obs. 3108 3108 752 
R2 0.0344 0.0401 0.0469 

† All regressions include census region dummy variables (New England is 
  the excluded region) and the share of county employment in manufacturing.  
  *,**,*** indicates significance at the 10 percent, 5 percent, and 1 percent levels 
   .  
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Table 3: Spatial Dependence Testsa (P-values) 

 All Counties MSA Counties 
Test for: Spatial Error Spatial Lag Spatial Error Spatial Lag 

Moran’s I 0λ =  0.0144  0.6330  

LM - 0λ =  0.059  0.4908  

Robust LM- 0λ =  0.1301  0.8781  

LM - 0ρ =   0.025  0.5015 

Robust LM- 0ρ =   0.054  0.9827 

Notes: N = 3108. a Moran’s I is based on standardized z-values that follow a normal distribution. The 
Lagrange multiplier (LM) tests are distributed as 2

1χ  with critical levels of 3.84 (p = 0.05). 

 
 
 

Table 4: Correcting for Spatial Effects 
 

(1) (2) 

 
All Counties All Counties 

 Spatial Error Spatial Lag 

Herf. Index -0.0012 
(0.473) 

-0.0012 
(0.468) 

Professional 
Share,1990 

0.4000 
(5.51)*** 

0.3950 
(5.50)*** 

Citation Weighted 
Patents, 1990 

0.6028 
(1.72)* 

0.5960 
(1.70)* 

University R&D per 
student, 1987-1989 

0.0001 
(2.97)** 

0.0001 
(2.99)** 

λ  0.1306 
(2.19)**  

ρ   0.1456 
(2.51)** 

No. of Obs. 3108 3108 
R2 0.0358 0.0369 

 † All regressions include census region dummy variables (New England is the excluded region) 
 and the share of county employment in manufacturing.  
 *,**,*** indicates significance at the 10 percent, 5 percent,  and 1 percent levels .  
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Figure 1
Location of Total

R&D Labs

 
 Each dot represents a spatial concentration of overall R&D labs.
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 Figure 2. Histogram showing the frequency distribution of the adjusted GFW index that 

compares the concentration of R&D labs in a given industry with the concentration of 
manufacturing employment. 
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Figure 3. Histogram showing the frequency distribution of the adjusted GFW index that 
compares the concentration of R&D labs in a given industry with the concentration of 
overall labs. 

 
The adjusted GFW index shows the sum of squared differences of the share of 
employment in manufacturing (Figure 2) or the share of overall labs (Figure 3)  
from the share of labs in a given industry, adjusted to account for industry structure. 
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Figure 4
Location of Software

R&D Labs
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Figure 5
Location of Pharmaceutical

R&D Labs
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Figure 6
Location of Chemistry

R&D Labs
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Figure 7
Location of Oil and Gas Field Machinery

R&D Labs
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Figure 8
Location of Motor Vehicle and Car Body

R&D Labs
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